
On Modernizing Variable
Data Printing (VDP)
Transforming VDP Into a Media That

Supports Fine-Grained, Unconstrained,
and Highly Creative Variability

J A C O B A I Z I K OW I T Z

Copyright © 2022 Jacob Aizikowitz.

All rights reserved. No part of this book may be reproduced, stored, or
transmitted by any means—whether auditory, graphic, mechanical, or

electronic—without written permission of both publisher and author, except
in the case of brief excerpts used in critical articles and reviews. Unauthorized

reproduction of any part of this work is illegal and is punishable by law.

Contents

Abstract�� v
Introduction�� vii

Paper’s Outline ���viii
Guiding Comments to the Reader��� ix

Desktop Publishing – The Foundation�� 1
Modernizing VDP��� 5

The Emergence of Elements-Based VPDLs (E-VPDL) ������������������������������ 5
The Emergence of Dynamic Documents�� 8
Printing Dynamic Documents�� 10

Composition�� 10
Modern VDP – A Short Summary�� 15

Concurrent Composition for Modern VDP �� 17
The Shared Dictionary Approach�� 19
The Dictionary Per Composer Approach�� 19
Is Concurrent Composition Stuck? �� 21

Computer Science to the Rescue�� 21
Dictionary Per Composer with Gossiping�� 22
On Merge Anomalies in Concurrent Composition���������������������������������� 24

Summary��25
On Innovations and Customers�� 26
On Modern VDP and Digital Color Printing Synergy���������������������������� 27

Acknowledgments ��29

APPENDIX I
FEW OBSERVATIONS ABOUT THE FUTURE OF MODERN

VDP AND TOOLS SUPPORTING IT

Where Do We Go from Here – What’s Next��33
Modern VDP and Interactive Print�� 33
Print Must Play Equally with Digital Media�� 34
The Role of AI �� 35
Print and Digital’s Data Models are Drifting Apart�������������������������������� 35

Solutions for Embracing Modern VDP��37
About the Author ��39

APPENDIX II
CLOSING NOTES, FACTS, CLARIFICATIONS

On CXM, SXM, and Customer Journeys��43
On Elements-based VPDLs��47
On Gossiping��49
On Merge and Avoiding Anomalies��51

Avoiding the �Place before Define� Anomaly�� 51

Legacy VDP ��53
Desktop Publishing��57
Glossary�� 61

v

Abstract

T his paper examines the software developments that modernized Variable
Data Printing (VDP), transforming it into a first-class media, same as
digital, for individualized communications applications. The resulting

discipline is Modern VDP, and it enabled print to play, together with digital,
in Marketing Automation and Customer Experience Management (CXM),
which are large and fast-growing markets. The key to becoming such first-
class media was Modern VDP’s enablement of fine-grained, unconstrained,
creative variability combined with its online access to data and scripting to
compute variability.

This paper weaves together the needs, the challenges, the innovations, and
the developments that envisioned Modern VDP and brought it to life.

vii

Introduction

T he essence of modernizing Variable Data Printing (VDP) was the
vision to enable the design, authoring, and production of individually
relevant and engaging variable data print documents. We envisioned

these documents to support fine-grained and unconstrained variability,
which meant allowing a document to include parts of any type, dimension,
orientation, or location, that are variable. We felt that such variability would
bring VDP to support creative and engaging individualized communications.

The value of the vision was high, as the businesses that mastered Modern
VDP got access to large markets, especially Marketing Automation and
Customer Experience Management (CXM) (see On CXM, SXM, and
Customer Journeys on page 43). And for the digital printing industry, it
provided a much-needed stream of color pages.

However, implementing the vision was challenging. Modern VDP’s rich and
unconstrained variability implied complex, hence lengthy computations
when preparing documents for print. This performance barrier risked
the viability of Modern VDP; therefore, overcoming it was critical for
materializing the vision.

The heart of this paper is about analyzing the performance barrier and
explaining the solutions that eliminated it. Solutions included inventing
new abstractions for documents and print definition languages, developing

viii    Jacob Aizikowitz

software to implement them, and using networked computers to deliver
scalable performance gains.

This paper reflects on the experience with VDP that my colleagues and I had
while working at Scitex (1996-1999) and XMPie (1999-2019). Naturally, the
paper’s point of view is undeniably biased; however, our experience was broad.
It covered working on a broad spectrum of related disciplines, including
HW, and it included extensive collaboration with small and large industry
players who, like us, aspired to modernize VDP. Moreover, our experience
grew from a clean start, challenging the incumbent discipline (Legacy VDP)
rather than gradually evolving it. Altogether, these characteristics of our
experience make the approach we took, the challenges we faced, and the
solutions we developed universally relevant; hence this paper.

	� Paper’s Outline

The paper starts by presenting the Printing and Desktop Publishing
fundamentals, familiarizing the reader with the basis upon which VDP’s
modernization grew. The paper will then zoom in to discuss VDP and its
modernization. Since modernizing VDP embraced the principles of desktop
publishing, the discussion will cover the creation of a new document
abstraction for variable data documents and the design of a Variable
PDL (VPDL) – a new Page Definition Language (PDL) for VDP jobs. The
discussion then focuses on printing this new document type, which is all
about translating such a document to a stream of instructions in the VPDL.
Finally, the paper closes by presenting the use of concurrent processing
across networked servers to deliver ultra-performance gains for the print
process.

Driven by reviewers’ feedback, I added two Appendix chapters. The first one
outlines some insights about What’s Next with Modern VDP. The second one
covers few background key concepts or dives deeper into some technologies.

On Modernizing Variable Data Printing (VDP)   ix

	� Guiding Comments to the Reader

The heart of this paper is about technology. As such, certain parts might be
overly technical for some readers while being precisely suitable for others.
While I could not avoid a technical analysis, I pushed some of it to an
Appendix. Nevertheless, a section may still appear overly technical for
some readers. I recommend that the reader will skip either to the section’s
summary or to the next section in such a case.

In the paper, I sometimes use “we” or “our,” although I am the author. I
use these to reflect on the team efforts behind critical issues addressed by
this paper.

1

Desktop Publishing –
The Foundation

A printed document, such as an annual report or a product brochure,
starts as a digital desktop document that a person creates interactively
using a document application, such as Adobe InDesign. Then, it results

in a printed document through the process outlined in Figure 1.

DESKTOP PUBLISHING

Controller
(“DFE”) with
Interpreter

(“RIP”)

Next-page
Framebuffer

(“bitmap”)

Print Stream
(a sequence

of PDL
commands)

WYSIWYG
What You See Is What You Get

Printed
Document

Document
(e.g., InDesign)

PDL
Stream

*

Print

* Page Definition Language (PDL); Adobe PostScript or
 PDF are examples.

Figure 1: From a Document to Printed Pages, The Desktop Publishing Way

2    Jacob Aizikowitz

When instructed to print the document, the application – or the system’s
print driver – generates a sequence of instructions in a PDL, e.g., Adobe’s
PostScript, which specifies the document’s content and appearance in print
and communicates it to the printer’s Controller; this sequence is known
as a Print Stream.1 The Interpreter is the Controller’s subsystem that
processes print streams, interpreting the PDL instructions and generating,
for each page, a bitmap that faithfully resembles the specified page.2 Finally,
in coordination with its Interpreter, the Controller writes these bitmaps
into the printer’s page memory (“Framebuffer”), instructing the printer
to render the image in the Framebuffer onto a printed page. This process
results in printed pages that appear identical to the document’s pages on the
bitmapped display.

The above end-to-end process is the essence of implementing What You
See (on the computer display) Is What You Get (on paper) (WYSIWYG),
which demystified printing, allowing the “originators” – authors, designers,
creative professionals – to control the publishing process from their desktop
computers. So, WYSIWYG – the heart of desktop publishing – democratized
publishing, giving control to the many (originators) and taking it away
from the few (print magicians). For further details, please read Desktop
Publishing on page 57.

While elegant and straightforward, the above process must perform within
the real-time constraints imposed by the printer’s speed of printing pages.
These constraints arise because the Controller must finish writing the
Framebuffer of the next page before the print engine starts printing it. As
a result, the Interpreter must generate the bitmap of the next page before
the printer finishes printing the current page. Adhering to these real-time

1	 In practice, the head of the stream may be communicated to the printer
while its tail is being generated.

2	 A bitmap represents an array of digital representation of pixels. It may have
one bit per pixel, reflecting an on/off semantics, or say thirty-two bits per
pixel, every eight represent the intensity of a color component (e.g., CMYK).

On Modernizing Variable Data Printing (VDP)   3

requirements demands that either the interpretation speed be higher than
the speed at which the print engine emits pages or that an Interpret-first
Print-later (IFPL) method be used.3 Regretfully, as we will see in the sections
below, IFPL is not applicable for variable data printing.

3	 Implementing IFPL requires a sophisticated internal buffering mechanism,
allowing to implement IFPL in chunks.

5

Modernizing VDP

A VDP job represents a set of printed documents, each individualized
to one recipient.4 Taking the lead from Desktop Publishing, a VDP
job needs to start as a document on the desktop that describes a

set of documents – all the individualized documents of the VDP job.
Printing such a document requires generating a print stream in a VPDL.
Moreover, the Modern VDP vision demands that the VPDL and the
document support rich, fine-grained, and unconstrained variability.

Exploring VDP’s modernization, we will start with the language challenge
and follow with the document challenge. Then we will tie these together in
the section about printing Modern VDP.

	� The Emergence of Elements-Based VPDLs (E-VPDL)

As discussed, a VDP stream specifies the printing of the individualized
documents of the VDP job. Therefore, a straightforward VDP stream
would be the concatenation of the regular print streams of the job’s
individualized documents. But unfortunately, a concatenation-style VDP
stream is impossible performance-wise. Its large size – directly correlated
to the typically large size (e.g., number of recipients) of VDP jobs – prevents

4	 Recipients are usually individuals, but a recipient might be other things,
such as an indication of a version, a product type for a brochure, or a branch
of a restaurant chain.

6    Jacob Aizikowitz

interpreting the whole stream before printing, leaving Interpreting While
Printing as the only viable method.5 But Interpreting While Printing
requires interpreting faster than the speed at which the print-engine
emits pages, which is impossible to guarantee for concatenation-style
VDP stream. This is because such a stream is no different from a stream
specifying a random collection of unrelated documents.

Since the individual documents of a VDP job are not a random collection
of documents, there must be a better representation of a VDP stream. The
key insight was that the individual documents of a VDP job share content
and the content’s presentation, which means that an item that is part of
a document for one recipient may also be a part of another recipient’s
document. This insight implied that an Interpreter would be able to process
such repeating part once, cache the resulting bitmap, and reuse it whenever
that part would appear again.

But how would an Interpreter identify a section in the VDP stream that
represents such a part? We addressed this question by defining a new VPDL
with language constructs for explicitly specifying such potentially repeating
items. I would add that there are probably other algorithmic alternatives, but
further research is needed to reveal and assess them. However, this paper
will focus on the “being explicit” approach for specifying parts of the VDP
stream that are likely to repeat.

The VPDL we envisioned (1997) had explicit constructs for specifying items
that may repeat and for reusing such items. We introduced Elements – a
language construct – for defining and using items that may repeat. We
use the term Elements-based VPDLs (E-VPDL) to refer to this new flavor
of VPDLs.

We envisioned that an Element would support two operations: Defining it
and Placing it. Defining an Element gives it a name and associates it with a
sequence of instructions, e.g., in PostScript, which specifies how to render

5	 The stream’s size directly reflects the size of the VDP jobs, which can be
10,000 records long and, in many cases, 100,000 records long.

On Modernizing Variable Data Printing (VDP)   7

it in print. And Placing an Element is “rendering” the Element on the page
at the specified location. “Rendering” is tricky. The Interpreter can either
reuse a bitmap it prepared for the Element when it processed the Element’s
definition or avoid preparing the bitmap at definition time and reinterpret
the definition’s PDL upon each “render.” While results would be identical,
reusing the bitmap might be better performance-wise.

The leading Element-based languages were Scitex VPS, PPML (created by a
consortium of companies; started as an XML encoding of VPS), and Adobe’s
PDF/VT, which became the standard. For further context on Element-based
VPDL, examine the section On Elements-based VPDLs on page 47.

In summary, E-VPDLs and similarly flavored VPDLs opened the door for
developers – of Controllers, Interpreters, and hardware accelerators – to
create solutions for efficient and fast processing of Modern VDP jobs.

8    Jacob Aizikowitz

	� The Emergence of Dynamic Documents

Given a VPDL, one can create a VDP stream by programming in the
VPDL. However, like what happened in Desktop Publishing (see Desktop
Publishing on page 57), VDP shifted from programming the print stream
to designing the document and generating the print stream automatically
(see Figure 2). Our work supported this shift by (a) defining Dynamic
Document as an abstraction for a variable data document and (b) developing
applications that supported the creation, editing, and printing of Dynamic
Documents.

Dynamic
Document (e.g.,

a tagged InDesign
Doc, with links to

rules and data)

* Variable-data Page Definition Language (VPDL);
 Adobe PDF/VT is an example.

VPDL
Stream

*

Print

Controller
(“DFE”) with
Interpreter

(“RIP”)

Next-page
Framebuffer

(“bitmap”)

WYSIWYG
What You See Is What You Get

VARIABLE DATA PRINTING
(Following the Desktop Publishing Blueprint)

VDP stream
(in a VPDL,

e.g., PDF/VT)

The Set
of Printed

Documents
of the VDP Job

Figure 2: Variable Data Printing

We defined a Dynamic Document to be the binding of a dynamic template,
a set of rules, and data sets (see Figure 3). A dynamic template is a regular
document with tagged design objects, and any design object can be tagged.
A tagged design object is a Dynamic Object – its value, say a picture or a
text string, is calculated dynamically per recipient, using the rules indicated
by the object’s tag. The rules are specified in a scripting language, and they
range from assigning a value from a data field to scripts or SQL queries that

On Modernizing Variable Data Printing (VDP)   9

compute values from data. One data set is the Recipients List, which has one
record per recipient.

Conceptually, a Dynamic Document represents a set of Instance Documents,
where each Instance Document is a regular document individualized for a
unique recipient; individualization is by assigning values computed for that
recipient for all Dynamic Objects of the dynamic template (see Figure 3).

A DYNAMIC DOCUMENT REPRESENTS A
SET OF REGULAR DOCUMENTS, EACH
INDIVIDUALIZED TO ONE RECIPIENT

(“The Document’s Instances”)

Document
Instance

(Recipientn)

Document
Instance

(Recipientn-1)

Document
Instance

(Recipient3)

Document
Instance

(Recipient2)

Document
Instance

(Recipient1)

+ +
3
4

2
1

n

R
ecipients list

D
yn

am
ic

D
o

cu
m

en
t

++

D
yn

am
ic Tem

p
late

R
u

les
D

ata

R
ecip

ien
ts

List
A

 Set o
f

D
o

cu
m

en
t In

stan
ces

Figure 3: Dynamic Document and its Instances

	

10    Jacob Aizikowitz

The XMPie software is an example of implementing Dynamic Documents.
Its plug-in to Adobe InDesign desktop software enables creating InDesign-
based dynamic templates.

By defining the variability of a document in terms of its design objects, we
introduced unconstrained, fine-grained variability, breaking away from
the rigidity of structured business documents. Moreover, Object-based
variability resembled variability in web pages, enabling the bridging of print
and digital media for individualized communications.

	� Printing Dynamic Documents

Printing a Dynamic Document amounts to printing its Instance Documents.
However, rather than explicitly creating and printing Instance Documents,
one for each recipient, the process needs to use the E-VPDL to generate a
compact VDP stream that encodes the printing of all of these documents. We
use the term composition to refer to such a process, and the term Composer
refers to the process that performs composition.

A key challenge of the composition process is determining the object
instances that may repeat and, hence, define Elements for these (and use
these Elements when such object instances reappear). Let us zoom into the
composition process to understand this challenge and ways to resolve it.

Composition

The Composer scans the Recipients List, and for each recipient, it processes the
dynamic template. The process instantiates the dynamic objects, generates
the needed E-VPDL, and appends it to the VDP stream (see Figure 4).

On Modernizing Variable Data Printing (VDP)   11

SINGLE SERVER COMPOSITION

Dynamic Document

COMPOSER

E
le

m
en

ts
D

ic
ti

o
n

ar
y ID1

ID2

ID3

IDk

Recipients list

3
4

2
1

n

VPDL
Stream

Figure 4: Single Server Composition

In doing that, the Composer needs to distinguish the Instances that may
repeat, hence worthy of enabling caching a bitmap of their rendering.
Accordingly, we use the term Caching-worthy to refer to such Instances.

For Caching-worthy Instances, the Composer emits a DefineElement upon
the Instance’s first appearance and then a PlaceElement for every appearance
(first and repeat). For all other Instances, the Composer emits regular PDL.

Determining the Caching-worthiness of an object instance is tricky and
still open for further research.The XMPie Composer’s method decides
the Caching-worthiness of Instances of a Dynamic Object based on the
object’s type. It is based on classifying certain design-objects types – e.g.,
a graphic frame – as Reusable and all others as Unique. All Instances of
Reusable objects are considered Caching-worthy, and all others are not. In
addition, static Objects (i.e., non-tagged design objects) are also Reusable
(their content and appearance are not changing, but they reappear for every
recipient).

12    Jacob Aizikowitz

A REUSABLE OBJECT, ITS INSTANCES FOR
THE GIVEN RECIPIENTS LIST, AND A MAPPING

SHOWING INSTANCES REUSE

Document
Instance

(Recipientn)

Document
Instance

(Recipientn-1)

Document
Instance

(Recipient3)

Document
Instance

(Recipient2)

Document
Instance

(Recipient1)

++

The Instances of the Reusable Dynamic Object,
given the data and recipients list

3
4

2
1

n

Recipients list

Dynamic Document

Reusable
Dynamic

Object

Figure 5: A Reusable Dynamic Object, Its Instances, and their Reuse

While simple to explain and implement, determining Caching-worthiness
based on the object’s type is not precise, as it may lead to mistakes, such as
caching an Instance that will not reappear (see the Green Car in Figure
5). There is room for further research, but since such errors do not affect
correctness and their negative impact on performance is low, it is practically
acceptable to use them.

Generating the E-VPDL for Caching-Worthy Instances

Handling a Caching-worthy Instance requires giving it a unique name –
Instance ID or ID – that will be the same each time the Instance appears
and then, for each appearance, using the name to determine whether the
Instance appeared before. Hence, upon instantiating a Reusable Object,

On Modernizing Variable Data Printing (VDP)   13

the Composer will compute the Instance ID and check whether this is the
Instance’s First or Repeat appearance.

For that, the Composer uses a dictionary – The Elements Dictionary – where
it manages the names of all Instances that it saw. For example, consider an
Instance X of a Reusable Object. If the Composer does not find X in the
Elements Dictionary, then it is the first appearance of X, and otherwise, it’s
a repeat appearance.

Upon a first, the Composer will add X to the Elements Dictionary, generate
the PDL instructions for rendering X, generate a DefineElement command
and append it and a PlaceElement, to the VDP stream. Upon a repeat, the
Composer just appends a PlaceElement to the VDP stream.

14    Jacob Aizikowitz

Figure 6 shows how a Composer transforms a Dynamic Document into
an E-VPDL stream. At the head of the VDP stream, the reader can see the
DefineElement and PlaceElement pairs that resulted from the Composer’s
seeing the relevant Instances the first time as it was processing the first three
recipients. Later in the stream, it reuses these Elements upon seeing the Red
and Orange Instances again.

Recipientn

Recipient2

Recipient3

C
O

M
P

O
SE

R

VDP Stream
A

P
LA

C
E

E
LE

M
E

N
T

D
E

F
IN

E
E

LE
M

E
N

T

P
LA

C
E

E
LE

M
E

N
T

D
E

F
IN

E
E

LE
M

E
N

T

P
LA

C
E

E
LE

M
E

N
T

D
E

F
IN

E
E

LE
M

E
N

T

P
LA

C
E

E
LE

M
E

N
T

P
LA

C
E

E
LE

M
E

N
T

Controller
(RIP, Interpreter)

A

IN
T

E
R

P
R

E
TA

T
IO

N
 &

 P
R

IN
T

IN
G

C
O

M
P

O
SIT

IO
N

++

3
4

2
1

n

Recipients list

Recipientn-1

Recipient1

Figure 6: The Composer’s Process and How Elements and Reusable Objects Play

Please note that defining an Element is just a recommendation to the
Interpreter to process the PDL commands in the definition and cache the
resulting bitmap. Similarly, the placement of an Element is a recommendation
to use the cached bitmapped rather than reinterpreting the PDL commands
in the definition. Whatever the Interpreter’s choice, including avoiding
caching and, instead, using reinterpretation, the results on paper must be
the same.

On Modernizing Variable Data Printing (VDP)   15

	� Modern VDP – A Short Summary

Defining object-based Dynamic Documents and Element-based VPDLs,
and developing the technologies for printing Dynamic Documents, were
cornerstones in transforming VDP. The use of Elements was critical for
enabling fine-grained unconstrained variability while also addressing the
performance challenges:

•	 Composers could save time by avoiding regenerating the PDL for
recurring Instances,

•	 Interpreters’ performance could be improved by caching and reus-
ing page bitmaps, avoiding reinterpretation.

Together, these materially removed the performance challenges and made
Modern VDP a viable media for marketing and customer experience
initiatives, along with digital media.

The fast evolution of color digital printing – color and image quality, speed,
substrates, and workflow – is linked with Modern VDP. On the one hand,
these modern digital color presses would have little use without Modern
VDP’s stream of pages that require these presses’ top quality. But, on the
other hand, without the print qualities provided by these digital color
presses, Modern VDP would have been rendered useless.

Interestingly, the shift to object-based variability of documents, combined
with enabling online access to data in databases and powerful scripting
for the variability computing rules, opened the door for bridging print
and digital media personalization. Thus, XMPie’s early vision of cross-
media personalization became real and practical due to inventing Dynamic
Documents and everything around it, as discussed above.

In the next section, we will cover Concurrent Composition, closing this
exploration of Modern VDP. The performance boost from implementing
composition across multiple collaborating networked servers can be game-
changing, especially considering the abundance of resources offered with
cloud computing.

17

Concurrent Composition
for Modern VDP

A simple method for concurrently composing a Dynamic Document is to
break the specified Recipients List into sub-lists and run a Composer
per sub-list (see Figure 7).

SIMPLISTIC SCHEMATICS OF CONCURRENT
COMPOSITION

MERGE

Assuming n Recipients and m Composers, then each Composer is
getting n/m Recipients (e.g., [1..100], [101..200], …, [901..1000]).

Dynamic
Document

Recipients list 1

COMPOSER 1

COMPOSER 2

COMPOSER m

Recipients list 2

Recipients list m

VPDL
Stream

3
4

2
1

n

Recipients list

Figure 7: Simplistic Schematics of Concurrent Composition

While simple, easy to implement, and highly scalable, it requires adding a
merge phase to combine the resulting sub-job VDP streams into one VDP
stream for the job. Adding a merge phase will introduce delays, but by

18    Jacob Aizikowitz

running the merge process and the Composers in a pipeline fashion, such
delays will be minimized. Furthermore, in cases where the print order does
not need to follow the order of records in the Recipient’s List, merging is
essentially concatenating the sub-job VDP streams in the order they arrive
from their Composers, hence a no-delay phase.

The main challenge of the above method for concurrent composition is
managing access to the Elements Dictionary. Composers need the dictionary,
and they will either share a global dictionary or work a local replica individually.
Whatever is the choice, it must satisfy two requirements: minimize redundant
definitions of Elements, and minimize delays due to processes coordination.

Let us examine the two alternatives – Shared Global Dictionary and
Dictionary Per Composer.

On Modernizing Variable Data Printing (VDP)   19

	� The Shared Dictionary Approach

E
le

m
en

ts
D

ic
ti

o
n

ar
y ID1

ID2

ID3

IDk

CONCURRENT COMPOSITION - SHARED
DICTIONARY

MERGE

Assuming n Recipients and m Composers, then each Composer is
getting n/m Recipients (e.g., [1..100], [101..200], …, [901..1000]).

Dynamic
Document

Recipients list 1

COMPOSER 1

COMPOSER 2

COMPOSER m

Recipients list 2

Recipients list m

VPDL
Stream

3
4

2
1

n

Recipients list

Figure 8: Concurrent Composition – The Shared Dictionary Approach

A straightforward approach for managing the Elements Dictionary is to
require Composers to share one global dictionary (see Figure 8). Such
sharing would guarantee no redundant definitions, but it will not satisfy
the requirement to minimize delays due to process coordination. Composers
must wait until granted exclusive access before inserting new IDs.

	� The Dictionary Per Composer Approach

The Dictionary Per Composer approach allows Composers to manage a
local replica (copy) of the dictionary (see Figure 9), eliminating process
coordination delays.

20    Jacob Aizikowitz

CONCURRENT COMPOSITION - DICTIONARY
PER COMPOSER

MERGE

Assuming n Recipients and m Composers, then each Composer is
getting n/m Recipients (e.g., [1..100], [101..200], …, [901..1000]).

VPDL
Stream

ID
a

ID
d

ID
z

ID
y

Elements
Dictionary
Replica 1

ID
b

ID
a

ID
x

ID
e

Elements
Dictionary
Replica 2

ID
e

ID
c

ID
b

ID
a

Elements
Dictionary
Replica m

Dynamic
Document

Recipients list 1

COMPOSER 1

COMPOSER 2

COMPOSER m

Recipients list 2

Recipients list m

3
4

2
1

n

Recipients list

Figure 9: Concurrent Composition – The Dictionary Per Composer Approach

However, the “minimize redundant definitions” requirement is not
satisfied. Such redundancies would happen when several different
Composers instantiate a Reusable Object to the same value and, not
finding that value in their local dictionaries, consider this the first
appearance.6 As a result, each Composer will create and append a
DefineElement command to the stream it generates. Since it is the same

6	 Different individuals may, for example, own the same car, and in a com-
munication related to a person’s car the Dynamic Object reflecting the
owned car will be instantiated to the same value for different records in the
recipients list.

On Modernizing Variable Data Printing (VDP)   21

value for all of them, these Element Definitions will be identical, hence
redundant.

	� Is Concurrent Composition Stuck?

Examining the above two approaches, we see that eliminating process-
coordination delays and eliminating redundant Definitions are “in conflict.”
Indeed they are, but insights gained from the Distributed Computing
discipline of Computer Science showed us a way out of this seemingly
deadlock situation.

Computer Science to the Rescue

We realized that our Dictionary Per Composer approach is an example
of Computer Science’s Replication Management problem – the Elements
Dictionary is the distributed service, and the local dictionaries are the
replicas. Composers use the service to look up or insert an ID. Examining
the research, we found a proven method, known as Gossiping, for managing
replicas while eliminating delays and minimizing – not eliminating
(!) – redundancies.

The generic idea behind Gossiping is that at each replica:

•	 A background process updates its peers (“gossips”) on its replica’s
state changes

•	 A background process listens to such updates (“gossip messages”),
and if it “hears” state changes that are not reflected in its replica’s
state, it will update the replica

•	 The main algorithm does not wait for these background processes.

While Gossiping does not introduce process coordination delays, it
minimizes replicas’ states differences but does not eliminate them. Hence,
only systems with a main algorithm that does not depend on replicas states
being identical at all times can leverage Gossiping.

22    Jacob Aizikowitz

Well, it turned out that our Dictionary Per Composer was precisely such
a system. Since the only state-changing operation is inserting an ID into
the dictionary, the only “error” from not finding an Instance, say X, in
a local dictionary when X is already in other dictionaries is a redundant
definition for X. But since redundant definitions do not cause correctness
problems, Dictionary Per Composer could work with Gossiping.7

	� Dictionary Per Composer with Gossiping

We augment each Composer with two processes: a Listener and a Talker
(see Figure 10). Whenever a Composer generates a new Element, it triggers
its Talker, which then, in parallel to the Composer continuing its process,
gossips – “broadcasts” to the Listeners of all other Composers – the ID of the
new Element. Listeners are waiting for gossip messages from Talkers. When
a Listener hears a gossip with an ID, say X, the Listener checks whether X
is already in its dictionary. If it is, it’s old news, and the Listener ignores
it. Otherwise, the Listener adds X to its dictionary, which will prevent its
Composer from treating an appearance of X as a first appearance, avoiding
a redundant definition.

Closing Thoughts on Replication and Gossiping

Gossiping-enhanced Dictionary Per Composer is a scalable solution that
fits the massive parallelism enabled by today’s cloud computing systems.
Realizing that Dictionary Per Composer is an instance of Distributed Systems
Replication Management and further understanding that it can sustain local
dictionaries not being identical at all times triggered augmenting it with
Gossiping. The key for any concurrent composition method is to use replicas
and avoid replicas’ lock-step synchrony. See On Gossiping on page 49 for
further analysis of Gossiping’s applicability criteria.

7	 Redundant definitions define the exact same appearance on paper, hence
processing one or the other will not affect the result.

On Modernizing Variable Data Printing (VDP)   23

CONCURRENT COMPOSITION - DICTIONARY
PER COMPOSER + GOSSIPING

MERGE

Assuming n Recipients and m Composers, then each Composer is
getting n/m Recipients (e.g., [1..100], [101..200], …, [901..1000]).

VPDL
Stream

Dynamic
Document

Recipients list 1

COMPOSER 1

Recipients list 2

Recipients list m

3
4

2
1

n

Recipients list

TALKER

LISTENER

TALKER

LISTENER

TALKER

LISTENER

ID
a

ID
d

ID
z

ID
y

Elements
Dictionary
Replica 1

COMPOSER 2

ID
b

ID
a

ID
x

ID
e

Elements
Dictionary
Replica 2

COMPOSER m

ID
e

ID
c

ID
b

ID
a

Elements
Dictionary
Replica m

Figure 10: Dictionary Per Composer with Gossiping

24    Jacob Aizikowitz

	� On Merge Anomalies in Concurrent Composition

Before closing this section, it is essential to note that avoiding redundant
definitions may result in a merged VDP stream that uses an Element before
defining it. Such an anomaly would happen when a Composer sees an
Instance, say X, the first time but finds X in its dictionary; hence, considers
this a repeat appearance of X and issues just a PlaceElement X into the VDP
stream it generates. If, in the merged VDP stream for the job, this stream
would appear ahead of the stream generated by the Composer that saw X
first and has the DefineElement X command in it. Please check On Merge
and Avoiding Anomalies on page 51 for a detailed explanation and ways
to solve these.

25

Summary

M odernizing VDP applied the principles of desktop publishing to
the VDP world. Giving control to the professionals who design
and author documents – the originators – was one fundamental

principle of desktop publishing. Applying it to VDP required defining
a new document abstraction – Dynamic Document – and providing
software for creating, editing, and printing such documents. In addition,
the need to satisfy various performance requirements in printing triggered
the development of Elements-based VPDLs, composition processes
that map Dynamic Documents into E-VPDL streams, and Controllers/
Interpreters that process such streams efficiently.8 The high-end
performance-improvement development was Concurrent Composition
with a distributed implementation of the Elements Dictionary service
that used local dictionaries and Gossiping to help minimize differences
between replicas.

Through its E-VPDL, Modern VDP established an ecosystem allowing
developers of applications, controllers/interpreters, and print technology
to play together, which accelerated Modern VDP growth and expanded
its reach.

8	 Controllers or Interpreters are not covered in this paper but were part of
the experience of my colleagues and I at Scitex.

26    Jacob Aizikowitz

Moreover, Modern VDP’s creative variability, together with its use of online
data and rules, made individualized print media – paper, packages, labels,
physical products, garments, and wearables – a first-class media, exactly like
digital. And this first-class status enabled reaching the large and fast-growing
markets of Marketing Automation, Customer Experience Management
(CXM), and, to a degree, Service Experience Management (SXM).

	� On Innovations and Customers

An interesting takeaway from exploring how Modern VDP evolved is
that its key innovations and developments were not a response to explicit
requirements from customers. Instead, these emerged from observations on
where technology could lead and why getting there would be valuable for the
market. So, for example, there was no requirement for creating an Element-
based VPDL as an enabler for variability-rich VDP jobs. Likewise, there was
no requirement to create a new document abstraction for graphically rich
and creative-friendly documents.

Interestingly, while customers and digital printing-press vendors could
imagine fully variable color pages coming out of these presses, they did not
formulate what is needed upstream to feed these presses with content that
will leverage their capabilities.

To summarize, sometimes customers are not aware of what’s possible
technology-wise, hence do not formulate a need and do not ask for a solution.
Therefore, innovators must internalize that asking customers what they
need/want and using their answers as specifications for a future product
will not lead to breakthrough, deep technology innovations. Therefore,
customers’ input and answers are essential for context but should not be a
literal specification.

On Modernizing Variable Data Printing (VDP)   27

	� On Modern VDP and Digital Color Printing Synergy

Advancements in digital color printing influenced the evolution of Modern
VDP. For example, there was no point in originating sophisticated, engaging,
and highly creative variable data documents without the ability to render
them in high-quality print. At the same time, without Modern VDP’s
demand for high-quality digital color print, the use-case of the advanced
digital color presses would have been weak.

29

Acknowledgments

M y experience at EFI (1989-1993), Scitex (1996-2000), and XMPie
(2000-2019) is the source of ideas, direction, solutions, insights, and
industry collaborations that are the foundations for this paper. My

XMPie co-founders, Israel Roth and Reuven Sherwin, who worked with
me at Scitex before founding XMPie, were intimate partners for analyzing
and addressing numerous issues covered by this paper. Others at XMPie
contributed to the innovations and developments covered in this paper.

Reuven Sherwin, Idan Youval, Zvika Leibovich, Israel Roth, and David
Baldaro gave me extensive feedback, and it sent me back to the writing desk
several times.

My colleagues, Andy and Julie Plata, the co-leaders of OutputlinksCG,
encouraged me to embark on the road that led to this paper, and they helped
with feedback. They also helped by engaging Harvey Levenson, Professor
Emeritus at Cal-Poly (San Luis Obispo), University of Houston Professor
Jerry Waite, and the industry thought leader Helene Blanchette who gave
their feedback. Another colleague and a well-recognized industry analyst,
Cary Sherburne, gave me extensive feedback and suggested adding the
What’s Next section. Finally, Frank Romano, Professor Emeritus at RIT
and the driving force behind the Museum of Printing, gave me constructive
suggestions.

30    Jacob Aizikowitz

My friend and colleague, Jeroen Van Druenen, one of XMPie’s top customers
and the President of its users’ group (XUG), gave me feedback that influenced
qualitative business observations in the paper.

Ayelet Szabo-Melamed was instrumental in helping publish this paper,
including engaging Natalie Broyer for creating the graphics, and David
Baldaro for handling all aspects of professionally publishing it. Natalie took
my sketches and skillfully brought them to life in the Figures of this paper.

APPENDIX I
Few Observations About the Future of
Modern VDP and Tools Supporting It

33

Where Do We Go from
Here – What’s Next

I n this section, I leave the description and analysis of the rear-view mirror
and switch to discuss a few front view items. Some are those enabled by
Modern VDP, some are new technologies that may advance Modern VDP,

and some are threats to its continued progress.

The enabling items are all around Modern VDP’s fit with digital media
and its impact on creating rich and engaging customer experiences. The
new technologies are the abundance of Machine Learning (ML) and
Artificial Intelligence (AI) technologies that are likely to open new horizons
for Modern VDP impact or enhance its implementation algorithms. The
threat that I see is what I perceive as a re-emerging gap between the data
technologies used by Modern VDP and those used by today’s digital media.

	� Modern VDP and Interactive Print

These days, the print piece, which might be a label, a package, a brochure,
a statement, or a garment, is “just a touchpoint.” In other words, beyond
the intended function of the printed object, the brand would want to use
it as a touchpoint in a customer journey to keep a relationship with the

34    Jacob Aizikowitz

customer. Hence, these days, the desire to use print as an entry point to
a digital dialogue (via a QR code or some form of Augmented Reality) is
everywhere. And in a world where individualization is mainstream (massive
customization, personalization, massive versioning), the print piece and
the touchpoints it leads to, or the touchpoints that lead to it, need to project
a holistic individually-relevant experience. Such an experience is like an
ongoing dialogue between the brand and the individual.

The only way to achieve such continuity and consistency is when the print
personalization is driven on-demand and online, with fine granularity, and
by the data and rules that serve the digital media. But, of course, Digital
was “born” to work like that, and, in order to play, print must embrace these
workflows and architectures.

Modern VDP and its data and rules models provide what’s needed for print
to play. But unfortunately, the Legacy VDP discipline, which preprocesses
the data, preparing it to the performance requirements of its composition
process, breaks the linkage with digital and renders print an archaic media.

	� Print Must Play Equally with Digital Media

Many in Graphic Communications (GC), including professionals in the
printing business, analysts, thought leaders, and providers of Hardware
and Software technologies, repeatedly explain the benefits of print in
engaging prospects or customers.9 Moreover, in this digital-first era,
the promoters of print, in their desire to keep print alive, emphasize the
power of print when combined with or supporting digital. The problem
with these promotions is that they ignore the challenge of integrating
print in a digital world.10 The way I see it, print’s use will be low for as

9	 prospects or customers also extend to citizens, employees, or partners.
10	 It is clearly a marketing or creative communications challenge; its just that

few recognize the depth of the technology challenge and its criticality to
enabling the communications or engagemen vision.

On Modernizing Variable Data Printing (VDP)   35

long as its personalization methods – interacting with data and rules –
will be vastly different from those practiced in the digital-media world.

As discussed above, Modern VDP gives print the needed data and rules
models, enabling it to play together with digital, as needed.

	� The Role of AI

Using AI is a broad issue. There are at least two flavors of it related to Modern
VDP. The first one is internal, implementation-related. For example, AI
could play a role in helping determine what is reusable and what is not—
even going to the degree of what’s reusable with a high-enough reusability
count and what is reusable but not worth the effort involved in caching and
reusing.

The second dimension for using AI is much broader, and it is external
in nature. It is all about defining, creating, and executing journeys. At
its core, this challenge is a journey builder challenge. And with Modern
VDP, customer journeys can include print and digital touchpoints, where
each touchpoint is highly creative and individualized. While such journeys
are more effective than the non-personalized, digital-only, or print-only
journeys, they are more complex to plan and design. And this is where
ML and AI can enter and help. Even with print-only touchpoints, the
sophistication in creative and variability that Modern VDP can bring to
such touchpoints may become a source of the need for AI to help define and
design these documents.

	� Print and Digital’s Data Models are Drifting Apart

In this paper and many other occasions, I stated that the data and rules
model used for Modern VDP was identical to the one used for digital
media. At the time of founding XMPie (1999-2000), this meant using SQL
with live access to databases and scripting for computing the variability

36    Jacob Aizikowitz

per recipient as an integral part of the composition process. Most if not
all other solutions for VDP at that time used an offline model for working
with data. “Offline” means that these models relied on a preprocessing
step – not part of the composition – that processed the data in databases,
creating one table with all the relevant data for the VDP job.11 That table
is offline because it’s a snapshot of the data when it was computed, and
it is stale beyond that.

Without online models for data and rules, such as those implemented in
the XMPie software, the results of a person interacting with a website and
updating information will not show in a follow-up print or even PDF piece.
By now, it should be clear that the professionals of the digital media world
cannot accept such “behavior.”

The problem we are facing today is that Modern VDP’s data and rules models
appear to have opened a gap relative to the models used by digital media.
For example, supporting SQL queries or external computations in your data
and rules model is now an old-fashioned approach. These days, methods and
subsystems that abstract away from the detail of SQL or scripting, such as
Meta’s GraphQL and React, are the norm in the digital world. Therefore, for
Modern VDP to stay relevant, it must embrace such methods. I will add here
that adopting these new methods is not just for the intrinsic benefits of these
state-of-the-art methods. Print must also recognize that the professionals
who plan and implement digital campaigns will hesitate to integrate print
into their work if print requires archaic processes.

11	 In the very early days of VDP, a magnetic tape with the content of such table
was used to transfer data to the print providers.

37

Solutions for Embracing
Modern VDP

Y ears ago, one of the first implementations of Modern VDP was at Scitex,
later to become Creo. Between Darwin, the plug-in to QuarkXPress
upstream, the VPS E-VPDL, and the Controller now known as the Creo

Controller, a Modern VDP offering came to market. Its primary deficiency
was the way it worked with data and rules. It required data to be one table
and used simplistic rules monolithically integrated within the application.
These requirements implied an offline process dependent on preprocessing
the data and extracting the relevant data into a one-table structure. And this
offline nature of the process meant severe difficulties in integrating it with
digital communications. Being a pure desktop solution, Darwin also lacked
the scalability needed for large-scale deployments of variable data solutions.

Aside from Darwin, few applications added support for VPS – one of the
first E-VPDLs – to their software. These included GMC (Quadient of today),
Document Sciences, PrintShop Mail, and Pageflex. Unfortunately, I have no
clarity about their data or rules-related functionality.

In founding XMPie, Modern VDP was implemented in full, and the
methodologies for working with data and rules were the same ones used

38    Jacob Aizikowitz

by the digital media world.12 As a result, integrating print and digital
in a cross-media campaign was straightforward, streamlined, and live
(i.e., always online). In addition, the server-side offerings of the solution
enabled resilience and scalability not seen before. The paper takes it
further to point out the technologies that allow sizeable scalability,
leveraging the abundance of cloud-based resources.

These days, other solutions, even those that specialized initially with
Legacy VDP, like OpenText or Quadient, might be offering Modern VDP
capabilities. Still, when examining a particular solution, it is crucial to
validate that the solution’s mechanisms for accessing and interacting with
data and rules are online – not requiring a data preparation preprocessing
before composition – precisely as the mechanisms used for digital.

12	 Online access to real databases, not just a single table, and power scripting
for the rules that compute variability.

39

About the Author

J acob Aizikowitz is a Computer Science professional who has worked
in Software Technology for Graphic Communications problems since
graduating from the Technion in Israel in 1977.

After completing graduate studies at Cornell University’s Computer Science
department, with his fresh Ph.D., he joined the late Efi Arazi (the founder of
Scitex) in founding Electronics for Imaging (EFII), where he led EFI’s R&D
and Engineering through 1992.

Returning to Israel in 1993, he joined IBM Research in Haifa, leading a few
commercial initiatives blending imaging research and engineering. In 1996
Jacob joined Scitex, coming back to Graphic Communications. He led the
development of Software and Hardware initiatives, including creating the
Creo Controller, the VPS language for variable data printing, and Darwin,
the applications for designing variable data documents.

Jacob founded XMPie in late 1999, and with his team, broke ground in
cross-media, creative VDP, and related disciplines. He led XMPie in various
roles to become a well-respected leading brand. In late 2006 Xerox acquired
XMPie and asked Jacob to continue leading it as XMPie, A Xerox Company.
In May 2019, Jacob retired, and he is now an advisor to entrepreneurs
and a board member at the Accrediting Council for Collegiate Graphic
Communications (ACCGC).

APPENDIX II
Closing Notes, Facts, Clarifications

43

On CXM, SXM, and
Customer Journeys

E ngaging an audience – customers, prospects, employees, citizens,
or members of groups – is a key goal of enterprises of all sizes,
municipalities, and governments.

In the past, it was done by classical media, such as newspaper advertising,
newsletters, radio, or TV advertising.

The emergence of the Internet opened numerous other means for engaging
audiences, including email and the World Wide Web. Then, on top of the
Internet platform, the social media means of communications emerged and,
yet again, added a plethora of new ways for interacting with and engaging
audiences.

The ease of access – cellular-based or Wi-Fi – and the abundance of
smartphones created a situation where the audience is “always-on.”
Moreover, individuals can control when and for what purpose they interact
with an entity.

While personalization has been a part of the marketing practice since the
emergence of Direct Marketing, it has become the norm in this digital,
always-on era. Individuals now expect a high degree of individualization

44    Jacob Aizikowitz

and high-quality design. Information alone – say a monthly summary of
transactions with the phone company – is not enough. The individuals’
experiences are now that the information and the relevancy are packaged
with rich media, delivering a colorful, creative, and engaging experience.

And this is precisely where Customer Experience becomes the leading theme.
The interaction with the individual is not one time anymore. It evolves,
reflecting on the individual’s reactions and the enterprise messaging goals.
The individual’s experience is like an individually-tailored dialogue with
the brand, not one of an audience listening to a lecture by the brand. The
individual relevancy can be in terms of content or presentation. It evolves
over multiple steps, and each step must reflect choices or actions done in
previous steps. These days, the business wisdom is that such dialogues will
lead to more sales and higher loyalty.

Hence, the focus is on Customer Experience Management and the software
tools and systems that enable creating and managing such experiences. The
notion of Service Experience Management is similar. The only difference
is that it focuses on service-related experiences, for example, a customer
calling for service of its refrigerator. The individual’s experience still needs
to be relevant, clear, engaging, and positively reflect on the brand.

A Customer Journey is sometimes used to describe an individual’s overall
experience. For example, such a journey may start with the individual
getting personalized direct mail. Then, as a reaction, the individual follows
through QR code into an individually relevant landing site. And then,
based on the individual’s interaction with the site, the enterprise sends
a follow-up email with a PDF attachment of some individually relevant
material (beautifully presented, of course). Finally, after receiving the
email with the PDF, the individual clicks a link, lands on a different
website, and purchases a product or service. These steps are touchpoints –
or stops/stations – in the customer journey. And CXM solutions allow
designing and planning such journeys, for the whole audience, with
automatic individualization.

On Modernizing Variable Data Printing (VDP)   45

Modern VDP is relevant to CXM and SXM because it enables creating print
or PDF touchpoints that are timely, engaging, and individually relevant
that fit well in the overall customer journey. Its individualization style and
detail, combined with its online use of data and rules, works well with the
experiences required for such journeys and the capabilities of the digital
media touchpoints in such journeys.

47

On Elements-based VPDLs

I n my writing, I followed the definition of Elements and their use as Israel
Roth, Reuven Sherwin, and I developed it in VPS – one of the early, if not
first, Element-based VPDLs (the late ‘90s while at Scitex). However, the

observation that the documents defined by a VDP job share parts of any
type, dimension, or location on the page, may have preceded ours. Thus,
for example, we could find the notion of Forms in PostScript as a part of
a print stream that could be reused. However, it was rarely used due to
interpretation-complexities in deciding whether the item described by the
Form is reusable as a cached bitmap.

The main difference that E-VPDL brought is the language design choice
to be explicit about what may repeat – hence defined as an Element – and
what not. In other words, an Element represents not just the repeating
content, say, a car image, but also the transformation used to place it on
the page. While potentially generating many Elements, that language
design choice made the Interpreter’s task straightforward, focusing on
implementing the explicit instructions for caching and reuse. However, it
is important to remember, especially when AI and ML are flourishing and
becoming accessible, that there may be other ways, requiring less precision
in the VPDL and leaving the Interpreter more (intelligent) guesswork and
optimization space.

48    Jacob Aizikowitz

In addition, please note that Elements in the VDP stream are just
recommendations for caching and reuse. The Interpreter may decide,
globally or case by case, to avoid the caching of the bitmaps that result from
processing the Element Definitions and reinterpret these definitions upon
the placement of Elements. The results on paper must be identical.

49

On Gossiping

F or Gossiping to impact Composition, one needs two main characteristics.
The first one is massive parallelism, i.e., many networked collaborating
computers. Without it, the Shared Dictionary approach may work fine.

It guarantees no redundant definitions, and, due to the small number of
“competing” Composers, the chronic delays of this method will be minimal.

The second one is Dynamic Documents with extensive, creatively rich
variability. It should be clear that Dynamic Documents with only a tiny
number of Reusable Objects require a low frequency of accessing the
Elements Dictionary (relative to the overall size of the whole job). Hence,
almost nothing to gossip about, rendering Gossiping unnecessary for
such a case.

Remember that (a) implementing Gossiping is easy, and (b) having it in the
background does not damage performance. Hence, the “price to pay” for
implementing Gossiping is minimal. In contrast, its benefit is priceless –
a concurrent composition architecture that works well for any degree of
Objects Reusability or any scale of parallelism.

51

On Merge and Avoiding
Anomalies

I n a concurrent composition architecture, the VDP stream that any
Composer generates (“the Local VDP Stream”) may have PlaceElement
commands without having the necessary DefineElement commands.

Such a situation can happen when a Composer sees an Instance, say X,
the first time but finds X in the Elements Dictionary, indicating that
another Composer found X already. As a result, the Composer will treat
the appearance of X as a repeat appearance; hence it will not issue the
DefineElement command and only issue the PlaceElement command. Such
“anomaly” in a Local VDP stream is not a problem because these local VDP
streams never go to an Interpreter. However, it is a problem when such an
anomaly appears in the VDP stream for the whole job. And regretfully, due
to merging decisions, the stream with the DefineElement for X may follow
the stream with PlaceElement for X, causing the anomaly in the combined
VDP stream. The merge process must prevent such anomalies.

	� Avoiding the �Place before Define� Anomaly

The simplest method for avoiding such anomalies is for the merge process to
extract Element definitions from the local VDP streams and append them to

52    Jacob Aizikowitz

the job’s VDP stream head. Regretfully, this simple method is inefficient as
it requires scanning the various local streams, extracting substreams from
them, and moving a lot of content around.

A better approach is for Composers to create two streams – a Definitions-
only stream and a Definitions-clean stream. Once done, each Composer
will communicate to the merge process the two streams. Next, the merge
process will create two streams: a Definitions-only VDP stream and
a Definitions-clean VDP stream.13 Finally, streaming the Definitions
stream followed by the no-Definitions stream will eliminate the anomaly.

As we close this section, it is worth noting that the VPS language supports
a job-id in the VPS stream. The merge process can use this mechanism to
avoid the literal merging of the sub-job VDP streams. Instead, it can feed the
sub-job VDP streams to the Controller in the required order. The Interpreter
will then process them as if they were parts of a VDP stream for the entire
job and in the correct order.

Finally, I would add that early in 2019, XMPie was granted a patent that
describes how Composers, merge processes, and Controllers/Interpreters
can achieve even better performance by collaborating more intimately. The
method breaks away from adhering to the “standard” E-VPDL streaming
protocol, allowing Composers to communicate Elements directly to the
Controller. As such, it enables the pipelining of composition and the
Interpreter’s processing of Elements Definitions to create the needed cached
bitmaps. Furthermore, since Element Definitions are communicated directly
to the Controller, the sub-job VDP streams have no Elements Definitions,
eliminating the anomalies.

13	 The merging of the Definitions stream is easy since there is no need to
preserve order.

53

Legacy VDP

T he term “Legacy VDP” refers to the VDP practice that supports the
printing in batches of individualized business documents, typically
Transactional or Forms documents.

These business documents have a rigid and simple structure. Certain
parts of such documents’ pages are identical to all recipients, and other
parts are unique per recipient. The rigid and plain design of these
documents allows capturing the common parts as a page background
that is identical to all pages of all recipients.14 As an example, consider
Forms. The graphics of the lines and text that define the Form’s fields
are a background.

Early phases of the Legacy VDP practice were based on first using classical
offset or similar printing technology for printing the backgrounds on
batches of pages. Then, using inkjet printing heads, print on these pages
(also known as “shells”), in designated areas, the textual variable data.
It should be clear that this practice was viable only because of business
documents’ rigid and simple structure. However, it should also be clear that

14	 At some point in the evolution of Legacy VDP, such backgrounds were
refined to be backgrounds to all pages that are targeting a specific segment.
This resulted in options to have few such backgorunds in a job, and switch
the background when moving from one segment to another.

54    Jacob Aizikowitz

this method influenced communicators’ vision about the type of documents
possible with VDP. In a way, for the communicators, the implementation
was given and non-negotiable; hence, they never challenged it and planned
their communications to adhere to the Shells and Variable fields constraints.

Interestingly, the technologies for VDP kept adhering to the Shells and
Variable fields concept, even when the printing technology evolved to full-
page digital printing, where each page could be completely different from the
page preceding it. This adherence was reflected in the protocols that these
digital print devices used to support VDP, which aimed at mimicking the
notions of Shells and Variable fields, “hiding” the true variability capabilities
of the print device. Indeed, supporting such protocols made these digital
print devices capable of supporting the existing world of VDP applications,
hence immediately worthwhile. In addition, it allowed migration from
Shells through offset and Variable fields via inkjet into full digital printing.
However, at the same time, these protocols kept “hidden” the ability of every
page to be completely different from the one preceding it.

The reality is that for the professionals upstream – authors, designers, and
communicators – the world of VDP continued to be the rigid and structured
one they were all accustomed to, completely disconnected from the true
capabilities of digital printing. This gap became even more acute once digital
color printing came to be (approximately 1995).

Only a few professionals in VDP challenged this status quo, wondering
why VDP is still adhering to the Shells and Variable fields metaphors when
the printing technology enables total variability everywhere on a page and
across all pages. In Scitex, my team and I were among the challengers;
teams at Adobe were also among the challengers. This paper is about why
we challenged the status quo and how the solutions evolved, bringing the
Modern VDP era.

In closing, the E-VPDL component of Modern VDP is a general-purpose
approach for variability. One can specify the printing of Legacy VDP
documents and enable the efficient processing of such specified print streams
by using an E-VPDL. For example, a Form layout would be specified as an

On Modernizing Variable Data Printing (VDP)   55

Element in the E-VPDL stream, and it would be placed (i.e., PlaceElement) at
the beginning of every page. Upon processing such an E-VPDL stream, the
Interpreter would cache the interpreted Form design as a bitmap and reuse
it with every page. So, the general-purpose variability of E-VPDLs would
automatically adjust itself to the benefits of Master Page and Variable fields
if the design calls for it. Yet, it will work just as well for a more sophisticated
design, whereas the Legacy VDP approach cannot even support it.

57

Desktop Publishing

F ew technologies that emerged around 1983 triggered the vision and
implementation of desktop publishing:

1.	 Bitmap Displays (Xerox, Apple, and others),
2.	 Laser Printers, including Apple’s LaserWriter
3.	 PostScript (Adobe), PostScript Interpreter in the LaserWriter

(Adobe and Apple),
4.	 Page Layout Software that uses the bitmap display, and PostScript

for printing (Aldus PageMaker)

The Bitmap displays enabled envisioning software that would support
designing and authoring documents interactively, based on what the
user sees on the screen. Such software aimed to provide a natural and
intuitive experience to the originators of documents – authors and creative
professionals. These Word Processing or Page Layout software applications
invented the interactive (digital) document experience. The image on the
screen mimicked the expected look of the printed page, and the applications’
tools supported all sorts of interactive document-editing functions.

58    Jacob Aizikowitz

Printing the document required the application to translate its document
representation into instructions for the printer.15 Using PostScript
guaranteed that the application would be able to define how to render
in print anything that it enabled creating at the desktop. And a Laser
Printer with a Controller and a PostScript interpreter could process such
a specification and print pages that matched the bitmap display.

The hallmark “feature” of the above process was that what users saw on
their screens, as they were creating and editing their documents, was
what would appear in print. Hence, What You See Is What You Get
(“WYSIWYG”). And this characteristic became a synonym for desktop
publishing.16

Desktop publishing was a major disruptor to the printing and publishing
industries. It started small, and professionals considered it to be a toy.
Eventually, in a classic Disruptive Innovation move, it took over all older
methods (and players) and became the de facto standard in publishing.17

The glue that tied all desktop publishing components was the PostScript
PDL. Its programming language power and device-independent imaging
model made it the hub of an ecosystem. It opened the publishing industry
to the developers of applications, controllers, interpreters, and print devices.
It meant that application development could move forward without relying
upon the progress of a printer or a Controller development. Similarly,
developers of Controllers did not have to coordinate their actions with
specific applications or features.

15	 In all systems it was also possible for the applications to use the sys-
tem’s print driver, and that driver would generate the needed PDL, e.g.,
PostScript. Yet, the high-end applications, which are those we focus-on in
this article, typically created the PostScript on their own.

16	 For the first 10 years, desktop publishing did not support device-indepen-
dent color. It was added during the early ‘90s.

17	 The late Harvard Professor Clayton M. Christensen defined and researched
Disruptive Innovation (https://hbr.org/2015/12/what-is-disruptive-
innovation).

On Modernizing Variable Data Printing (VDP)   59

In closing, I would add that introducing PostScript was a disruptive
innovation by itself. The incumbent leaders of the printing and graphic
arts industries – Scitex, Hell, Crosfield – did not realize the tsunami effect
that PostScript would bring. They perceived PostScript as a toy for personal
publishing, not the professional level they mastered and owned. These
leaders do not exist today, providing yet another example of the power of
the Disruptive Innovation phenomena.

61

Glossary

Bitmap A pixel array, having one or more bits per pixel.

Composer A Composer is a process that performs
composition – creating a VDP stream for printing
a Dynamic Document.

Concatenation-style
VDP stream

A VDP stream that is a concatenation of the
regular PDL print-streams of the individual
documents of the VDP job.

Controller A Controller is a networked computer that
manages a printer. It typically includes the
Interpreter subsystem (see Interpreter).

CXM Customer Experience Management.

Dynamic Document A Dynamic Document is a document abstraction
that represents variable data documents.

Element An Element is a named group of instructions
in the VPDL that represents a likely-to-repeat
Instance of an object of the Dynamic Document.

62    Jacob Aizikowitz

Elements Dictionary The Elements Dictionary is a dictionary where
entries indicate the Instance IDs of Objects for
which Element Definitions are already part of the
VPDL stream.

E-VPDL A Variable-data Print (Page) Definition Language
(“VPDL”) that supports Elements.

Framebuffer The Framebuffer is an internal memory hardware
of a printer that stores the image (bitmap) of the
to-be-printed page.

Gossiping Gossiping is an algorithm for managing replicas’
states in implementations of services, where
multiple networked servers collaborate to
implement a service. Implementing the Elements
Dictionary in the Dictionary per Composer
method is an example of a distributed computing
implementation of a service.

Instance ID Instance ID is a unique name that a Composer
assigns to an Instance of a Dynamic Object (i.e.,
the value of that Dynamic Object for a given
recipient record).

Interpreter The Interpreter is a Controller subsystem that
processes input print streams and converts them
to instructions and data to the printer, resulting in
printed pages that match what the print streams
specified.

Listener The process that “listens” to gossip messages.
It is part of the implementation of Gossiping in
Dictionary per Composer.

Object-based
variability

Every design object in a document can be
variable. Typically, no restrictions on the design
object’s type, dimensions, or location.

On Modernizing Variable Data Printing (VDP)   63

PDF/VT PDF/VT is Adobe’s VPDL, which is now a
standard.

PDL PDL stands for a Page Definition Language (also
Page Description Language, Print Description
Language, or Print Definition Language, which
are all the same).

PPML Personalized Print Markup Language (an XML-
based VPDL)

Recipients List A list of records, each representing one recipient.
A recipient typically represents an individual,
but it may represent any individual target such as
a product, a population segment, or a branch in
a chain.

Rules The logic for computing values for Dynamic
Objects, given the data and the recipient record.
For example, it could be selecting a value from a
database field or a complex script that computes
a value.

Talker The process that sends gossip messages. It is part
of the implementation of Gossiping in Dictionary
per Composer.

VPDL Variable-data Print Definition Language.

VPS Variable Print Specification. One of the first
VPDL; was defined and developed by Scitex.

WYSIWYG What You See Is What You Get (see Desktop
Publishing).

